Code Flash	Sh	а Туре	Pore Size	Surface	Size	Bonding	End Capping pH stabil Comment		Applications
PF-15SIHP	S	Silica HP	60 Å	500 m ² /g	15 µm	Silica	no	1.5 - 6.5	Non-ionic, polar organic compounds
PF-30SIHP	S	Silica HP	60 Å	500 m ² /g	30 µm	Silica	no	1.5 - 6.5	Non-ionic, polar organic compounds
PF-50SIHP	S	Silica HP	60 Å	500 m²/g	50 µm	Silica	no	1.5 - 6.5	Non-ionic, polar organic compounds
PF-15SIHC	S	Silica HC	60 Å	680 m²/g	15 µm	Silica	no	1.5 - 6.5	Non-ionic, polar organic compounds
PF-25SIHC	S	Silica HC	60 Å	680 m²/g	25 µm	Silica	no	1.5 - 6.5	Its 680 m ² /g surface area provides the highest loading capacitv capabilities Non-ionic, polar organic compounds
									Its 680 m ² /g surface area provides the highest loading
PF-50SIHC	S	Silica HC	60 Å	680 m²/g	50 µm	Silica	no	1.5 - 6.5	Non-ionic, polar organic compounds
									Its 680 m ² /g surface area provides the highest loading
IR-50SI	IR	Silica STD	60 Å	450 m²/g	50 µm	Silica	no	1.5 - 6.5	capacity capabilities Non-ionic, polar organic compounds
PF-50SIAG	S	Silica HP	60 Å	500 m2/g	50 µm	Silica	no	1.5 - 6.5	purification of stereo-isomers compounds
PF-30HILIC	S	Silica HP	60 Å	500 m ² /g	30 µm	Hilic	multi-step hydrophilic	2 - 6.5	purification of water-soluble compounds by aqueous normal pahse
PF-15C18HQ	S	Silica HQ	100 Å	400 m²/g	15 µm	C18	multi-step	1.5 - 8.0 Carbon : 20%	Ultra pure, high quality C18 with narrow pores & particles size distribution
PF-15C18HP	S	Silica HP	60 Å	$500 \text{ m}^2/\text{g}$	15 µm	C18	one-step	1.5 - 7.0 Carbon : 20%	Serves many pharmaceutical applications.
PF-30C18HP	S	Silica HP	60 Å	500 m ² /g	30 µm	C18	one-step	1.5 - 7.0 Carbon : 20%	The high bonding density of C18 facilitiates purification of Serves many pharmaceutical applications.
	c		co Å	24	F0.um	C19	ono ston	1 F 7 0 Carbon • 200/	The high bonding density of C18 facilitiates purification of
PF-30C18HP	3		60 A	500 m⁻/g	50 μΠ	C18	one-step	1.5 - 7.0 Carbon 20%	The high bonding density of C18 facilitiates purification of
PF-15C18HC	S	Silica HC	60 Å	680 m²/g	15 µm	C18	multi-step	1.5 - 7.5 Carbon : 22%	Purification of non-polar compounds by reverse phase.
PF-30C18HC	S	Silica HC	61 Å	680 m²/g	30 µm	C18	multi-step	1.5 - 7.5 Carbon : 22%	Its 680 m ² /g surface area provides the highest loading Purification of non-polar compounds by reverse phase.
PF-15C18XS	S	Silica HP	60 Å	500 m²/g	15 µm	C18XS	multi-step	1 - 10.0 Carbon : 21%	Its 680 m ² /g surface area provides the highest loading Purification of non-polar compounds by reverse phase. A strong end-capping technology allow to purify basic
PF-30C18XS	S	Silica HP	60 Å	500 m²/g	30 µm	C18XS	multi-step	1 - 10.0 Carbon : 21%	drugs at up to pH: 10 without damage for the sorbent. Purification of non-polar compounds by reverse phase. A strong end-capping technology allow to purify basic
IR-50C18	IR	Silica STD	60 Å	450 m ² /g	50 µm	C18	one-step	1.5 - 7.0 Carbon : 20%	C18-phase reference. Serves a broad-ship of purification requirements for non polar compounds.

PF-15C18AQ	S	Silica HP	60 Å	500 m²/g	15 µm	C18AQ	one-step	2 - 7.5	Carbon : 14%	The bonding chemistry allow to start gradient with 100% of water
PF-30C18AQ	S	Silica HP	60 Å	500 m²/g	30 µm	C18AQ	one-step	2 - 7.5	Carbon : 14%	The bonding chemistry allow to start gradient with 100% of water
PF-15RPAQ	S	Silica HP	60 Å	500 m²/g	15 µm	RPAQ	one-step	1 - 7.5	Carbon : 6%	The bonding chemistry allow to start gradient with 100% of water.
PF-30RPAQ	S	Silica HP	60 Å	500 m²/g	30 µm	RPAQ	one-step hydrophilic	1 - 7.5	Carbon : 6%	The bonding chemistry allow to start gradient with 100% of water.
PF-30NH2	S	Silica HP	100 Å	400 m ² /g	30 µm	NH2	one-step	2 - 6.5	Carbon : 4%	Carbohydrates / polar organics compounds / anion & organic acids
PF-50NH2	S	Silica HP	100 Å	400 m ² /g	50 µm	NH2	one-step	2 - 6.5	Carbon : 4%	Carbohydrates / polar organics compounds / anion & organic acids
PF-50NH2HC	S	Silica HC	60 Å	680 m ² /g	50 μm	NH2HC	n.c.	1.5 - 6.5	Carbon : 4%	Strong basic /Carbohydrates / polar organics compounds. Can be use as metal scavenger for acid chlorides, isocyanantes, Very high capacity
PF-50DEAP	G	Silica Granular	60 Å	500 m ² /g	50 µm	DEAP				Secondary amino is a weak anion exchanger with pKa : 10.5. Suitable for Charged polar organics compounds.
PF-30OH	S	Silica HP	60 Å	500 m²/g	30 µm	Diol		1.5 - 7.0		Basic compounds by normal phase. Phenolic compounds
PF-50OH	S	Silica HP	60 Å	500 m²/g	50 µm	Diol		1.5 - 7.0		Basic compounds by normal phase. Phenolic compounds
PF-50CN	S	Silica HP	60 Å	500 m²/g	50 µm	Cyano	one-step	1.5 - 7.0	Carbon : 5%	Polar compounds by reverse phase
PF-50MM1	G	Silica Granular	100 Å	400 m ² /g	50 µm	MM1	no	1 - 7.5		Mid-polar and non polar organic compounds under cationic form
PF-50SCX	S	Silica HP	100 Å	$400 \text{ m}^2/\text{g}$	50 µm	SCX	no	1 - 7.5	SCX : 0.3 meq/g	Cationic charged & basic organic compounds
UP60-60SAX	G	Silica Granular	60 Å	500 m ² /g	50 µm	SAX	no	1.5 - 7.0	SAX : 0.3 meq/g	Anionic charged & Acid organic compounds
PF-100P6 PF-ALN	G G	Polvamide Alumina	60 Å 60 Å	200 m²/g	100 μm 32/63 μm	P6	no no	1-12	neutral	Exhibits a constant selectivity toward flavones, chalkones, non ionic polar compounds
PF-ALB	G	Alumina	60 Å	200 m ² /g	32/63 µm		no	1-12	basic	non ionic polar compounds
PF-AC	G	Carbone								Decolorization
PF-CET	G	Celite 566								
PF-X	S	Polymer	100 Ă	800 m ² /g	40 μm			1 - 13		Universal polymer with high surface area designed to purify a broad range of hydrophobic compounds through a variety of matrices (waters, oils, plasma, urines) in a pH range from 1 to 14.
PF-302H	S	Polymer	100 Å	850 m ² /g	30 µm			1 - 13		Universal polymer with high surface area designed to purify a broad range of hydrophobic /hydrophilic compounds through a variety of matrices (waters, oils, plasma urines) in a pH range from 1 to 14

PT-15C18T	S	Silica HP	200 Å	150 m²/g	15 µm	C18T	one-step	1.5 - 8	Carbon : 14%	Weakly hydrophobic peptides & oligopeptides up to 50 kD	
PT-30C18T	S	Silica HP	200 Å	150 m²/g	30 µm	C18T	one-step	1.5 - 8	Carbon : 14%	Weakly hydrophobic peptides & oligopeptides up to 50 kD	
PT-15C8	S	Silica HP	200 Å	150 m²/g	15 µm	C8	one-step	2 - 7	Carbon : 5%	Fairly hydrophobic peptides & oligopeptides up to 60 kD	
PT-30C8	S	Silica HP	200 Å	150 m²/g	30 µm	C8	one-step	2 - 7	Carbon : 5%	Fairly hydrophobic peptides & oligopeptides up to 60 kD	
PT-15C4	S	Silica HP	200 Å	150 m²/g	15 µm	C4	one-step	2 - 7	Carbon : 3%	hydrophobic peptides & oligopeptides up to 60 kD	
PT-30C4	S	Silica HP	200 Å	$150 \text{ m}^2/\text{g}$	30 µm	C4	one-step	2 - 7	Carbon : 3%	hydrophobic peptides & oligopeptides up to 60 kD	
PP-15C18T	S	Silica HP	300 Å	100 m ² /g	15 µm	C18T	one-step	1.5 - 8	Carbon : 6%	Fairly hydrophobic peptides & oligopeptides up to 40 kD	
PP-30C18T	S	Silica HP	300 Å	100 m²/g	30 µm	C18T	one-step	1.5 - 8	Carbon : 6%	Fairly hydrophobic peptides & oligopeptides up to 40 kD	
PP-15C8	S	Silica HP	300 Å	100 m ² /g	15 µm	C8	one-step	2 - 7	Carbon : 4%	Hydrophobic polypeptides & peptides up to 80 kD	
PP-30C8	S	Silica HP	300 Å	$100 \text{ m}^2/\text{g}$	30 µm	C8	one-step	2 - 7	Carbon : 4%	Hydrophobic polypeptides & peptides up to 80 kD	
PP-15C4	S	Silica HP	300 Å	100 m ² /g	15 µm	C4	one-step	2 - 7	Carbon : 2.5%	Hydrophobic proteines & polypeptides, 50 up to 150 kD	
PP-30C4	S	Silica HP	300 Å	100 m²/g	30 µm	C4	one-step	2 - 7	Carbon : 2.5%	Hydrophobic proteines & polypeptides, 50 up to 150 kD	
CF-90A500	S	Cellufine	500 kDa	n.a	90 µm	DEAE	no	1-13	1,3 meq/g - c	Weak anion exchanger. Capturing & intermediate	/ml
									>10mg BSA/ml	purification of proteins, peptides & enzymes	/500ml
CF-90Q500	S	Cellufine	500 kDa	n.a	90 µm	QA	no	2-12	1,5 meq/g - c	Strong cation exchanger. Capturing & intermediate	/ml
									>10mg BSA/ml	purification of proteins, peptides & enzymes	/500ml
CF-90C500	S	Cellufine	500 kDa	n.a	90 µm	CM	no	1-13	1,1 meq/g - c	Weak cation exchanger. Capturing & intermediate	/ml
		- H (1				o. 16. i			>10mg BSA/ml	purification of proteins, peptides & enzymes	/500ml
CF-75SO4	S	Cellufine	3 kDa	n.a	75 μm	Sulfate	no	3-12	>/00 µg/g - c	Virus & Heparin binding proteins purification	/ml
									>3mg		/100ml
CE-90FI	ς	Cellufine	2000 kDa	na	90 um	Etclean I	no	2-13	LVSOZVME/MI 480 ug	Endotoxines removal	/ml
	5	Centrine	2000 KDu	11.0	50 μΠ		110	2 15	endotoxine/ml		/100ml
CF-75ES	S	Cellufine	2 kDa	n.a	75 µm	Etclean S	no	2-13	185 μg	Endotoxines removal	/ml
					•				endotoxine/ml		/100ml
CF-90C4	S	Cellufine	4000 kDa	n.a	90 µm	Butyl	no	2-13	>11 BSA/ml	Hydrophobic interaction	/ml
											/100ml
CF-90PH	S	Cellufine	4000 kDa	n.a	90 µm	Phenyl	no	2-13	>12 BSA/ml	Hydrophobic interaction	/ml /100ml
CT-20IA	S	Silica			20 µm	amylose tris	s (3,5-dimeth	ylphenylc	arbamate)	purification of Chiral compounds	, _00111
CT-20IC	S	Silica			20 µm	cellulose tri	s (3,5-dichlo	rophenvlc	arbamate)	purification of Chiral compounds	
CT-20ID	S	Silica			20 μm	Amylose Tri	is (3-Chlorop	henvlcarb	, amate)	purification of Chiral compounds	
CT-200D-I	S	Silica			20 um	cellulose tri	s (3 5-dimeti	vinhenvi	carbamate)	nurification of Chiral compounds	
5. 200D I	5	Sinca			-0 µm	senaiose tri	s s,s annet	- processing in	a sumace,		