

PharmaFluidics' **?**PAC™ Compatible EASY-Spray™ Emitter

Our µPAC™ Compatible EASY-Spray™ Emitter provides plug-andplay connectivity with Thermo Fisher EASY-Spray™ sourceequipped mass spectrometers.

Opis szczegółowy

PharmaFluidics&HASH39; μPAC™ Compatible EASY-Spray™ Emitter

Our μPAC™ Compatible EASY-Spray™ Emitter provides plug-and-play connectivity with Thermo Fisher EASY-Spray™ source-equipped mass spectrometers.

• 0.1 - 1.5µl/min

Under OEM with Thermo Fisher, the EASY-Spray $^{\text{TM}}$ transfer line is adapted by PharmaFluidics and equipped with a stainless steel 50 μ m through-bore union. The combination of a μ PAC $^{\text{TM}}$ column and a transfer line is designed for high resolution separations in nano LC-MS applications. The combination of a μ PAC $^{\text{TM}}$ column and a transfer line is designed for high resolution separations in nano LC-MS applications. The design with the stainless steel union allows for easy and virtually dead-volume-free installation to any nano LC system. The μ PAC $^{\text{TM}}$ Compatible EASY-Spray $^{\text{TM}}$ is used with both our μ PAC $^{\text{TM}}$ columns.

200 cm μPAC™ column

The 200 cm µPAC[™] column is your best choice when you&HASH39;re looking for a deep coverage of very complex samples with long gradient times.

- 0.1 1 µl/min
- 4h 8h gradient time
- Unique proteome coverage

50 cm μPAC™ column

Our 50 cm μ PACTM column is perfect for faster high-throughput analyses while maintaining superior performance.

- 0.1 2 µl/min
- 30 min 2h gradient time
- 30% increase in proteome IDs

μPAC™ Trapping column

These micromachined trapping columns were developed with identical stationary phase morphology as the analytical columns to ensure optimal chromatographic performance.

- Up to 20 μl/min
- Decrease sample loading times
- Mathing stationary phase morphology